DOC.#486

SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

I

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	MATHEMATICS		
Code No.:	MTH 1224		
Program:	COMPUTEF[PROGRAMMER		
Semester:	TWO		
Date:	JANUARY 1989		
Author:	J. GLOWACKI		

New:

Revision:

APPROVED:

<u>V/K_^ W w U _</u> Chairperson

Х

-2-

CALENDAR DESCRIPTION

MATHEMATICS

MTH 122-4

COURSE NAME

COURSE NUMBER

PHILOSOPHY/GOALS:

This course presents the mathematics needed in computer programming. Concepts taught will also assist in other computer courses. Emphasis is placed on how to interpret a problem and to develop a solution algorithm. The computer will be used to obtain output for specified problems.

METHOD OF ASSESSMENT (GRADING METHOD;

Periodic tests and daily assignments based on material in course outline will be given during the semester. A final rewrite test at the end of the semester will be given at the discretion of the instructor.

The final mark will be based on four unit tests, each representing 25% of the final mark.

GRADING:	A+	=	90100
	А	=	8089%
	В	=	6579%
	С	=	5564%
	R	=	054%

A passing grade will be based on a minimum grading of 55%. Students obtaining a grade of 45-54% may be allowed to write a rewrite test. However, only students who have attended at least 80% of the math classes will be considered for a rewrite test.

TEXTBOOK(S):

Kay, Christine B., MATHEMATICS FOR COMPUTER PROGRAMMERS,

-3-

MATHEMATICS MTH 122-4

COURSE OUTLINE

TOPIC NO.	PERIODS	TOPIC DESCRIPTION	REFI	ERENCE
		BINARY SYSTEMS - number base concepts - binary, octal and hexadecimal	Pg.	246-292
	11	NUMBER SYSTEMS - sets and Venn diagrams - integer and real number sets - format arithmetic	Pg.	1-52
	10	ALGORITHMS - input, process and output - repeating steps and decisions	Pg.	53-79
	12	ALGEBRAIC APPLICATIONS FOR PROGRAMMING - order of operations - inequalities - exponents - equation solving	Pg.	96-136
	10	ADVANCED ALGEBRA CONCEPTS - arithmetic and geometric sequences - matrices	Pg.	202-245
		MATHEMATICAL LOGIC	Pg.	304-321